A tutorial-based introduction to C

Martin Sparre

Potsdam University



The aims for this course are

¢ Cis alow-level programming language.
e Cis very fast!

¢ Commonly used in high-performance computing.



Hello world!

A hello world program reads like:

#include <stdio.h>
int main(){
printf(”Hello world!\n”);

return 0;

}



C is a compiled programming language

¢ compile with: gcc HelloWorld.c -o HelloWorld
¢ then run with: ./HelloWorld



Example: Loops are fast in C

A program that calculates the mean of the numbers
between 0 and 10%:

InC: In Python:

int main(){ mean = 0.0
int i; for i in range(100000000):
double mean; mean+=i/1e8

mean = 0.0;
for(i=0;i<100000000;i++)
mean+=i/100000000;

return O;

}

The C-program is > 10 times faster than the Python program.



Pointers and arrays




Pointers handles memory

A pointer is a variable which holds a memory address.
Some syntax:

¢ Define a pointer to a double: double *x;. x is then the
address of a double.

* Allocate memory and point x at the address:
x = malloc(sizeof(double));
or x = malloc(sizeof(double)*100).
(for a double or an array of 100 doubles,
respectively).



Pointers and arrays

Pointers and arrays are equivalent in C.

* To get the value at the address of the pointer x type
*x; or alternatively x[0];

* The following two statements are equivalent *(x+i);
and x[i];. It takes the i'th element of the array x.
Pointers and arrays are equivalent because
*(x+1) == x[i]



The memory in a pointer can be de-allocated with the free
command. i.e. free(x);



Workflow with pointers/arrays

//We declare two arrays

double xx;

double xy;

//Allocate memory for two arrays:

x = malloc(sizeof(double)«NArray);

y = malloc(sizeof(double):NArray);
//Do stuff here... We now have two arrays x[0],x[1], x[2],...
/fand y[0Ly[1], y[2],...

//It is good practive to free arrays after use:
free(x);

free(y);

See example6.c!



Tip: It is good practive to initialise as NULL

//We declare two arrays

double xx;

double »y;

//Initialise as NULL

x = NULL;

y = NULL;

//Allocate memory for two arrays:

x = malloc(sizeof(double)*NArray);

y = malloc(sizeof(double)+NArray);
//Do stuff here... We now have two arrays x[0],x[1], x[2],...
/fand y[0]y[1], y[2],...

//It is good practive to free arrays after use:
free(x);

free(y);



	Pointers and arrays

