
A tutorial-based introduction to C

Martin Sparre

Potsdam University



About C

The aims for this course are

• C is a low-level programming language.

• C is very fast!

• Commonly used in high-performance computing.



Hello world!

A hello world program reads like:

#include <stdio.h>

int main(){

printf(”Hello world!\n”);

return 0;
}



C is a compiled programming language

• compile with: gcc HelloWorld.c -o HelloWorld

• then run with: ./HelloWorld



Example: Loops are fast in C

A program that calculates the mean of the numbers
between 0 and 108:

In C:

int main(){
int i;
double mean;
mean = 0.0;
for(i=0;i<100000000;i++)

mean+=i/100000000;

return 0;
}

In Python:

mean = 0.0
for i in range(100000000):

mean+=i/1e8

The C-program is > 10 times faster than the Python program.



Pointers and arrays



Pointers handles memory

A pointer is a variable which holds a memory address.
Some syntax:

• Define a pointer to a double: double *x;. x is then the
address of a double.

• Allocate memory and point x at the address:
x = malloc(sizeof(double));
or x = malloc(sizeof(double)*100).
(for a double or an array of 100 doubles,
respectively).



Pointers and arrays

Pointers and arrays are equivalent in C.

• To get the value at the address of the pointer x type
*x; or alternatively x[0];

• The following two statements are equivalent *(x+i);
and x[i];. It takes the i’th element of the array x.
Pointers and arrays are equivalent because
*(x+i) == x[i]



free()

The memory in a pointer can be de-allocated with the free
command. i.e. free(x);



Workflow with pointers/arrays

//We declare two arrays
double *x;
double *y;
//Allocate memory for two arrays:
x = malloc(sizeof(double)*NArray);
y = malloc(sizeof(double)*NArray);
//Do stuff here... We now have two arrays x[0],x[1], x[2],...
//and y[0],y[1], y[2],...
//It is good practive to free arrays after use:
free(x);
free(y);

See example6.c!



Tip: It is good practive to initialise as NULL

//We declare two arrays
double *x;
double *y;
//Initialise as NULL
x = NULL;
y = NULL;
//Allocate memory for two arrays:
x = malloc(sizeof(double)*NArray);
y = malloc(sizeof(double)*NArray);
//Do stuff here... We now have two arrays x[0],x[1], x[2],...
//and y[0],y[1], y[2],...
//It is good practive to free arrays after use:
free(x);
free(y);

See example6.c!


	Pointers and arrays

